# Diels-Alder Reactions of Pyrano[3,4-b]indol-3-ones and a 2-Benzopyran-3-one with Hetero Substituted Olefins: Generation of Carbazole and Naphthalene Derivatives by Elimination instead of Dehydrogenation 

Peter I. Van Broeck, Philippe E. Van Doren, Suzanne M. Toppet and Georges J. Hoornaert*<br>Departement Scheikunde, K.U. Leuven, Celestijnenlaan 200 F, B-3001 Leuven (Belgium)


#### Abstract

Pyrano[3,4-b]indol-3-ones are shown to undergo cycloaddition with electron-rich olefins. However, after loss of $\mathrm{CO}_{2}$ from the adducts, the intermediate indole-2,3-quindodimethanes are not dehydrogenated-after a 1,5 -sigmatropic hydrogen shift-to yield the expected heterosubstituted carbazoles. Rather, aromatisation arising from elimination of the hetero substituent takes place and other carbazoles are formed. In the same way, a hydroxyethylated naphthalenic compound was obtained from the adduct of 6,7-dimethoxy-1-methyl-2-benzopyran-3-one with 3,4-dihydrofuran. The hetero substituent is only conserved in cycloadditions of enamides with pyrano[3,4-b]indol-3ones.


Recently, we reported that pyrano[3,4-b]indol-3-ones reacted with a series of electron-poor olefins to give stable substituted 1,2-dihydrocarbazoles. ${ }^{1.2}$ The formation of these compounds involved cycloaddition of the starting materials, subsequent $\mathrm{CO}_{2}$-extrusion from the adduct followed by a 1,5 -sigmatropic hydrogen shift in an intermediate indole-2,3-quinodimethane.

The continued interest ${ }^{3}$ in Diels-Alder reactions of pyrano[3,4-b]indol-3-ones prompted us to study the reaction of the pyranoindolone system and a 2-benzopyran-3-one with electron-rich dienophiles and related $2 \pi$-components.

## Results and Discussion

1,9-Dimethylpyrano[3,4-b]indol-3-one 1a when heated in neat cyclohexene gave a large amount of $6,6 \mathrm{a}, 7,8,9,10$-hexahydro-5,6-dimethylbenzo[b]carbazole 2 which could, as expected from earlier predictions, ${ }^{1.2}$ be dehydrogenated to the corresponding 7,8,9,10-tetrahydrobenzo[b]carbazole 3.


The observed high yield of the carbazolic compound $\mathbf{3}$ in the reaction of pyranoindolone la with cyclohexene contrasts with the results obtained by Moody et al. in the reactions of pyranoindolones with unactivated acetylenic compounds such as hept-1-yne and diphenylacetylene to yield little if any carbazole. ${ }^{3}$ Furthermore, the same authors observed no cycloaddition of the pyranoindolone system with electron-rich acetylenes. Because of this lack of reactivity, a more elaborate ( 5 steps) sequence rather than a simple Diels-Alder reaction of 1-phenylpyrano[3,4-b]indol-3-one with 1-methoxypropyne
had to be used for the synthesis of the alkaloid hyellazole. ${ }^{4}$
The results obtained with cyclohexene prompted us to test the reactivity of the pyranoindolones $\mathbf{1 a} \mathbf{a} \mathbf{b}$ with enol systems such as ethyl vinyl ether 4, vinyl acetate 5 and 4-methoxybut3 -en-2-one 6. These compounds and other heterosubstituted olefins, e.g. enamides, could yield polyfunctionalised carbazoles with protected hydroxy or amino groups. However, the major products isolated from the reaction of the pyranoindolones 1a and $\mathbf{1 b}$ with the enol ether 4 were, respectively, 1,9dimethylcarbazole 9 a and ethyl carbazole-1-carboxylate 9 b , in each of which the ether group was absent. Reaction of the pyranoindolone 1a with compound 5 also gave the $1,9-\mathrm{di}$ methylcarbazole 9 a in high yield $(97 \%$ ). Reaction of pyranoindolone 1a with compound 6 provided the 2 -acetyl-1,9dimethylcarbazole 9c and its 3-acetyl isomer 10 in a ratio of ca. $1: 1$. Compounds of type $\mathbf{9 , 1 0}$ probably arise from alcohol or acetic acid elimination from the intermediate indole-2,3quinodimethanes 7,8 which fail to give (after rearrangement and dehydrogenation) the expected products of type 11, 12. The isolation of 1,2 -dihydro-1,9-dimethylcarbazol-3(4H)-one 15 from the reaction of the pyranoindolone 1a with the enol ether 4 may arise from a 1,5 -hydrogen migration step, followed by hydrolysis of the corresponding 1,2 -dihydrocarbazole 13. The reactions with ethyl vinyl ether gave no information about the ratio of the intermediates 7, 8. However reaction of the pyranoindolones 1a and 1c with the cyclic enol ethers dihydrofuran 16a and dihydropyran 16b produced either one 17a or two regioisomeric carbazoles 17b, c and 18b, c substituted at the 2 - or 3 -position with a protected hydroxyalkyl group. This protection by, respectively, a tetrahydrofuranyl group and a tetrahydropyranyl group is due to the excess of dienophile reacting with the hydroxyalkylated carbazoles 19, 20 primarily formed by an elimination process. Removal of these groups and isolation of the alcohols 19 and 20 was possible via methanol elution of the compounds 17 and 18 on an activated Dowex column. The regiochemistry of the addition could be deduced from the $J$ values for $4-\mathrm{H}, 3-\mathrm{H}$ or 2-H in compounds 19, 20. However, we feel that more experiments are required to explain the observed regiochemical behaviour. In the above experiments, avoidance of elimination in favour of dehydrogenation was not achieved by the use of a catalyst such as palladium-on-charcoal. ${ }^{5}$

A comparable and unavoidable elimination took place in the reaction of the pyranoindolone 1a with trans- $\beta$-nitrostyrene. The 1,9-dimethyl-2- (or 3)-phenylcarbazoles 21 and 22 obtained



Scheme 4
(Scheme 4) were identical with those produced during the reaction of the pyranoindolone and styrene. ${ }^{1}$

Somewhat more successful results were obtained with enamides such as $N$-vinylpyrrolidone $\mathbf{2 3}$ or $N$-(benzyloxy-carbonyl)- and $N$-acetyl-4,5-dihydropyrrole 25a, b instead of enol ethers: the cycloadditions proceeded regioselectively and no elimination products were observed. Thus, reaction of the pyranoindolone 1a and N -vinylpyrrolidone in the presence of a dehydrogenating catalyst gave a moderate yield of 1,9-
dimethyl-3-(2-oxopyrrolidin-1-yl)carbazole 24 (2-H and 4-H, ${ }^{1} \mathrm{H}$ NMR signals at 7.43 and 7.97 ). The reaction of the pyranoindolone 1a with compound $25 a$ and of the pyranoindolone 1c with compound 25b gave the $N$-acylated 2,3-dihydropyrrolo[3,2-b]carbazoles 26a and 26b (Scheme 5). The regiochemistry of the addition is assumed to be comparable with that observed for compound 24. This is an agreement with the pronounced broadening of the $9-\mathrm{H}$ and $10-\mathrm{H}$ NMR signal as a result of the effect of the 1-benzyloxycarbonyl group in compound 26 a.

6,7-Dimethoxy-1-methyl-2-benzopyran-3-one 28 generated in situ from the o-acetylphenylacetic acid 27 in refluxing acetic anhydride as dehydrating agent, ${ }^{6}$ showed a similar behaviour to that of the pyran $[3,4-b]$ indol-3-ones 1 . The intermediate adduct 29 formed with dihydrofuran decomposed to a hydroxyethylated naphthalene derivative of which the alcohol function was further acetylated to yield the naphthalenic compound 30 (Scheme 6). However, the Diels-Alder reaction

$1 a+$



Scheme 5


27


Scheme 6 Reactants and conditions: $\mathrm{i}, \mathrm{Ac}_{2} \mathrm{O}$, reflux; ii, $-\mathrm{CO}_{2}$; iii, elimination (deprotection); iv, acetylation.
of 2-benzopyran-3-one 28 with N -vinylpyrrolidone yielded a complex mixture.

## Experimental

IR spectra were recorded as thin films between NaCl plates or as solids in KBr pellets on a Perkin-Elmer 297 spectrometer ${ }^{1}$ H NMR spectra were recorded on a Bruker WM 250 spectrometer using $\mathrm{Me}_{4} \mathrm{Si}$ as standard: $J$ Values are in Hz . ${ }^{13} \mathrm{C}$ NMR spectra were all recorded on a Bruker WM 250 spectrometer operating at 62.5 MHz and using 90 and 135 DEPT pulse sequences to aid in assignment. Mass spectra were recorded on a Kratos MS 50 instrument operating at 70 eV and $150-250^{\circ} \mathrm{C}$ as required. Exact mass measurements were performed at a resolution 10000 . M.p.s were taken on a Reichert-Jung Thermovar apparatus and are uncorrected. MNKieselgel 60 ( $70-230 \mathrm{mesh}$ ) or aluminium oxide (Fluka, type 507 C neutral) and chloroform stabilised with 2-methylbut-2ene were used for chromatographic separations. All solvents and reagents were dried and purified by standard procedures. All cycloadditions were performed under nitrogen or in vacuo. Pyrano[3,4-b]indol-3-ones $1,{ }^{7}$ phenylacetic acid derivative $27^{8}$ and $N$-acyl-4,5-dihydropyroles $25 a-\mathbf{b}^{9}$ were prepared as previously described.

Reaction of 1,9-Dimethylpyrano[3,4-b]indol-3-one 1a with Cyclohexene.-A mixture of the pyranoindolone $1 \mathrm{a}(0.43 \mathrm{~g}, 2$ mmol ) and cyclohexene ( $4 \mathrm{~cm}^{3}$ ) was degassed by subsequent freeze-pump-thaw cycles; it was then heated in a sealed tube for 3 days at $120{ }^{\circ} \mathrm{C}$. The excess of dienophile was evaporated under reduced pressure and the residue was chromatographed
on silica gel (toluene- $\mathrm{CHCl}_{3}, 1: 1$ ) to give a mixture of 6,6a,7,8,9,10-hexahydro-5,6-dimethylbenzo[b]carbazole 2 and the corresponding 7,8,9,10-tetrahydrobenzo[ $b$ ]carbazole $\mathbf{3}$ in a ratio of $3: 1$. Compound 2 was completely converted into the product $\mathbf{3}$ within a week.

For compound $2 \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25(3 \mathrm{H}, \mathrm{d}, J 7.5)$, 1.75 ( $7 \mathrm{H}, \mathrm{m}$ ), $3.20(3 \mathrm{H}, \mathrm{m}), 3.53(3 \mathrm{H}, \mathrm{s}), 7.00(3 \mathrm{H}, \mathrm{m}), 7.10$ ( $1 \mathrm{H}, \mathrm{br} \mathrm{s}$ ) and $7.35(1 \mathrm{H}, \mathrm{m})$.

For compound $3(0.46 \mathrm{~g}, 93 \%)$; m.p. $160{ }^{\circ} \mathrm{C}(\mathrm{MeOH})$ (Found: C, 86.6; H, 7.6; N, 5.5. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}$ requires C, 86.7; H, 7.7, N, $5.6 \%$ ); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.85(4 \mathrm{H}, \mathrm{m}), 2.63(3 \mathrm{H}, \mathrm{s}), 2.83$ ( $2 \mathrm{H}, \mathrm{t}, J 6$ ), $2.97(2 \mathrm{H}, \mathrm{td}, J 6$ and 1$), 4.00(3 \mathrm{H}, \mathrm{s}), 7.25(3 \mathrm{H}, \mathrm{m})$, $7.65(1 \mathrm{H}, \mathrm{d}, J 1)$ and $7.97(1 \mathrm{H}, \mathrm{m}) ; m / z 249\left(\mathrm{M}^{+}, 100 \%\right)$ and 234 (22)).

Reaction of Pyrano[3,4-b]indol-3-ones 1a and 1b with Ethyl Vinyl Ether 4 and Reaction of the Pyranoindolone 1a with Vinyl Acetate 5 and 4-Methoxybut-3-en-2-one 6: General Procedure.A degassed mixture of the pyranoindolone 1 a or $\mathbf{1 b}(1.5 \mathrm{mmol})$ and dienophiles 4,5 or $6\left(5 \mathrm{~cm}^{3}\right)$ with toluene $\left(3 \mathrm{~cm}^{3}\right)$ was heated in a sealed tube during 5 days at $80^{\circ} \mathrm{C}$ for ethyl vinyl ether, or during 3 days at $120^{\circ} \mathrm{C}$ for compounds 5 and 6 . The residue obtained after evaporation was chromatographed on silica gel $\left(\mathrm{CHCl}_{3}\right)$ to give 1,9-dimethylcarbazole (9a) or ethyl carbazole-1-carboxylate 9 b for reactions of compounds 4 and 5. The 1,2-dihydro-1,9-dimethylcarbazole-3(4H)-one 15 was also isolated in the reaction of compound 4 with 1a. A 1:1 mixture of 2-acetyl-1,9-dimethylcarbazole 9c and its 3-acetyl isomer 10 was obtained from the reaction of compound 6. They could be separated by HPLC.

For compound $9 \mathrm{a}(44 \%$ with ethyl vinyl ether and $97 \%$ with vinyl acetate); m.p. $110^{\circ} \mathrm{C}$ ( MeOH ) (lit., ${ }^{10} \quad 108-109^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.60(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 6.8-7.4(5 \mathrm{H}$, $\mathrm{m})$ and 7.7-8.0 $(2 \mathrm{H}, \mathrm{m}) ; \mathrm{m} / \mathrm{z} 195\left(\mathrm{M}^{+}, 100 \%\right), 180(11)$ and 165 (4).
For compound 9b ( $0.18 \mathrm{~g}, 50 \%$ ); m.p. $102^{\circ} \mathrm{C}$ (hexane) (Found: $\mathbf{M}^{+}, 239.0949 . \mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires $M, 239.0946$ ); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1680\left(\mathrm{CO}_{2} \mathrm{Et}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.50$ $(3 \mathrm{H}, \mathrm{t}, J 7.5), 4.50(2 \mathrm{H}, \mathrm{q}, J 7.5), 7.25(1 \mathrm{H}, \mathrm{t}, J 7), 7.27(1 \mathrm{H}, \mathrm{td}$, $J 7$ and 1.5 ), $7.45(1 \mathrm{H}, \mathrm{td}, J 7$ and 1.5$), 7.50(1 \mathrm{H}, \mathrm{dd}, J 7$ and $1.5), 8.10(2 \mathrm{H}, \mathrm{dd}, J 7$ and 1.5$), 8.28(1 \mathrm{H}, \mathrm{dd}, J 7$ and 1.5$)$ and 9.95 ( $1 \mathrm{H}, \mathrm{br} \mathrm{s}$ ); $\delta_{\mathrm{c}} 167.5$ (CO), 140.4 (C), 139.6 (C), 127.3 (CH), $126.5(\mathrm{CH}), 125.3(\mathrm{CH}), 124.6(\mathrm{C}), 122.5(\mathrm{C}), 120.4(\mathrm{CH})$, $119.9(\mathrm{CH}), 118.4(\mathrm{CH}), 111.9(\mathrm{C}), 111.1(\mathrm{CH}), 60.9\left(\mathrm{CH}_{2}\right)$ and $14.4\left(\mathrm{CH}_{3}\right) ; m / z 239\left(\mathrm{M}^{+}, 68 \%\right), 193(100), 165(33)$ and 139 (14).

For compound $9 \mathrm{c}\left(0.16 \mathrm{~g}, 45 \%\right.$ ); m.p. $87^{\circ} \mathrm{C}(\mathrm{MeOH})$ (Found: $\mathrm{M}^{+}, 237.1154 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}$ requires $M$, 237.1154); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1685(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.67(3 \mathrm{H}, \mathrm{s})$, $2.90(3 \mathrm{H}, \mathrm{s}), 4.12(3 \mathrm{H}, \mathrm{s}), 7.2-7.5(4 \mathrm{H}, \mathrm{m}), 8.00(1 \mathrm{H}, \mathrm{d}, J 7.5)$ and $8.10(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}} 203.5(\mathrm{CO}), 143.3(\mathrm{C}), 140.8(\mathrm{C}), 138.1$ (C), 126.7 (CH), 125.7 (C), 122.2 (C), 120.5 (CH and C), 119.7 $(\mathrm{CH}), 119.4(\mathrm{CH}), 117.3(\mathrm{CH}), 109(\mathrm{CH}), 33.4\left(\mathrm{CH}_{3}\right), 30.8\left(\mathrm{CH}_{3}\right)$ and $16.8\left(\mathrm{CH}_{3}\right) ; m / z 237\left(\mathrm{M}^{+}, 91 \%\right), 222(90)$ and $194(42)$.

For compound $10(0.16 \mathrm{~g}, 45 \%)$; m.p. $163^{\circ} \mathrm{C}(\mathrm{MeOH})$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.67(3 \mathrm{H}, \mathrm{s}), 2.85(3 \mathrm{H}, \mathrm{s}), 4.10(3 \mathrm{H}, \mathrm{s})$, 7.2-7.5 ( $3 \mathrm{H}, \mathrm{m}$ ), $7.69(1 \mathrm{H}, \mathrm{s}), 8.12(1 \mathrm{H}, \mathrm{d}, J 7.5)$ and $8.55(1 \mathrm{H}$, s); $\delta_{\mathrm{c}} 197.6$ (CO), 142.5 (C), 142.2 (C), 128.9 (C and (H), $126.3(\mathrm{CH}), 123.3(\mathrm{C}), 123.2(\mathrm{C}), 120.1$ (C and CH$), 120(\mathrm{CH})$, $119.8(\mathrm{CH}), 109(\mathrm{CH}), 32.2\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right)$ and 20.3 $\left(\mathrm{CH}_{3}\right)$.

For compound 15 ( $0.06 \mathrm{~g}, 18 \%$ ) (Found: $\mathrm{M}^{+}, 213.1151$. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}$ requires $\left.M, 213.1154\right) ; v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1720$ (CO); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.27(3 \mathrm{H}, \mathrm{d}, J 7.5), 2.55(1 \mathrm{H}$, dd, $J 13.5$ and 2), $2.99(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 7.5$), 3.47(1 \mathrm{H}, \mathrm{pd}, J$ 7.5 and 2 ), 3.48 ( $1 \mathrm{H}, \mathrm{d}, J 20$ ), $3.67(3 \mathrm{H}, \mathrm{s}), 3.69(1 \mathrm{H}, \mathrm{d}, J 20)$, $7.12(1 \mathrm{H}, \mathrm{t}, J 8), 7.25(2 \mathrm{H}, \mathrm{m})$ and $7.42(1 \mathrm{H}, \mathrm{d}, J 8) ; \delta_{\mathrm{C}} 209.7$ (CO), 138.2 (C), 137.6 (C), 126.1 (C), 121.6 (CH), 119.3 (CH),
$117.6(\mathrm{CH}), 109(\mathrm{CH}), 104.8(\mathrm{C}), 46.9\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 29.1$ $\left(\mathrm{CH}_{3}\right), 28.4(\mathrm{CH})$ and $21.5\left(\mathrm{CH}_{3}\right) ; m / z 213\left(\mathrm{M}^{+}, 84 \%\right), 185$ (46) and 170 (100).

Reaction of 1,9-Dimethylpyrano[3,4-b]indol-3-one 1a with 3,4-Dihydrofuran 16a or 3,4-Dihydro-2H-pyran 16b and of 1 -Phenylpyrano[3,4-b]indol-3-one 1b with Dienophile 16a: General Procedure.-A degassed mixture of the pyranoindolone 1a or 1b ( 1 mmol ), the dienophile 16a or $16 \mathrm{~b}\left(5 \mathrm{~cm}^{3}\right.$ ), palladium-oncharcoal ( 0.04 g ) and toluene ( $3 \mathrm{~cm}^{3}$ ) was heated in a sealed tube during 4 days at $120^{\circ} \mathrm{C}$. The residue obtained after evaporation was chromatographed on silica gel ( $2 \%$ EtOAc$98 \% \mathrm{CHCl}_{3}$ ) to give a tetrahydrofuranyl ether 17a, c; 18a, c or a tetrahydropyranyl ether 17b, 18b which could be deprotected on an activated Dowex column ( 25 g Dowex, eluent MeOH ) to give the hydroxyalkylated carbazoles 19 , 20.

For compound 19a ( $0.14 \mathrm{~g}, 58 \%$ ); m.p. $125^{\circ} \mathrm{C}$ (toluene) (Found: $\mathrm{M}^{+}, 239.1311 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}$ requires $M, 239.1310$ ); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3290(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.63(1 \mathrm{H}$, br ), $2.75(3 \mathrm{H}, \mathrm{s}), 3.07(2 \mathrm{H}, \mathrm{t}, J 8), 3.85(2 \mathrm{H}, \mathrm{t}, J 8), 4.03(3 \mathrm{H}$, s), $7.02(1 \mathrm{H}, \mathrm{d}, J 8), 7.18(1 \mathrm{H}, \mathrm{m}), 7.30(1 \mathrm{H}, \mathrm{d}, J 8), 7.43(1 \mathrm{H}$, $\mathrm{m}), 7.83(1 \mathrm{H}, \mathrm{d}, J 8)$ and $7.99(1 \mathrm{H}, \mathrm{d}, J 8)$; $\delta_{\mathrm{c}} 142.3$ (C), 140.9 (C), 134.6 (C), 125.4 (CH), 122.8 (C), 122.7 (C), 122 (CH), 119.6 $(\mathrm{CH}), 119.1(\mathrm{C}), 118.9(\mathrm{CH}), 117.7(\mathrm{CH}), 108.7(\mathrm{CH}), 63.3\left(\mathrm{CH}_{2}\right)$, $37.2\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{3}\right)$ and $15\left(\mathrm{CH}_{3}\right) ; m / z 239\left(\mathrm{M}^{+}, 49 \%\right)$, 208 (100) and 193 (8).

Compounds 19b and 20b were obtained as a $1: 1$ mixture ( $0.13 \mathrm{~g}, 52 \%$ ) which could be separated by HPLC.

For compound $19 \mathrm{~b}(0.07 \mathrm{~g}, 27 \%)$; m.p. $80-82^{\circ} \mathrm{C}$ (toluene) (Found: $\mathbf{M}^{+}, 253.1472 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}$ requires $M, 253.1467$ ); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3325(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} \mathrm{CDCl}_{3}\right) 1.40(1 \mathrm{H}$, $\mathrm{brs}), 1.90(2 \mathrm{H}, \mathrm{p}, J 7), 2.75(3 \mathrm{H}, \mathrm{s}), 2.90(2 \mathrm{H}, \mathrm{t}, J 7), 3.70(2 \mathrm{H}$, $\mathrm{t}, J 7$ ), $4.06(3 \mathrm{H}, \mathrm{s}), 7.06(1 \mathrm{H}, \mathrm{d}, J 8), 7.2-7.4(3 \mathrm{H}, \mathrm{m}), 7.86(1 \mathrm{H}$, $\mathrm{d}, J 8)$ and $8.00(1 \mathrm{H}, \mathrm{d}, J 8)$; $\delta_{\mathrm{C}} 142.4$ (C), 141 (C), 138.5 (C), 125.3 (CH), 123 (C), 122.3 (C), 121.5 (CH), 119.6 (CH), 118.9 $(\mathrm{CH}), 118.5(\mathrm{C}), 117.6(\mathrm{CH}), 108.6(\mathrm{CH}), 62.6\left(\mathrm{CH}_{2}\right), 34.1$ $\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{3}\right), 30.5\left(\mathrm{CH}_{2}\right)$ and $14.9\left(\mathrm{CH}_{3}\right) ; m / z 253\left(\mathrm{M}^{+}\right.$, $33 \%$ ), 222 (15), 208 (100) and 194 (12).

For compound $20 \mathrm{~b}(0.06 \mathrm{~g}, 25 \%)$; m.p. $120-122^{\circ} \mathrm{C}$ (toluene); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.40$ ( $1 \mathrm{H}, \mathrm{br}$ s), $1.90(2 \mathrm{H}, \mathrm{p}, J 7), 2.80(3 \mathrm{H}, \mathrm{s}), 2.90(2 \mathrm{H}, \mathrm{t}, J 7), 3.70$ ( $2 \mathrm{H}, \mathrm{t}, J 7$ ), $4.06(3 \mathrm{H}, \mathrm{s}), 7.06(1 \mathrm{H}, \mathrm{d}, J 2), 7.2-7.4(3 \mathrm{H}, \mathrm{m}), 7.75$ $(1 \mathrm{H}, \mathrm{d}, J 2)$ and $8.00(1 \mathrm{H}, \mathrm{d}, J 8) ; \delta_{\mathrm{c}} 141.7$ (C), 138.1 (C), 132.1 (C), 129.3 (CH), 125.2 (CH), 123.5 (C), 122.5 (C), 120 (C), 119.6 $(\mathrm{CH}), 118.4(\mathrm{CH}), 117.2(\mathrm{CH}), 108.2(\mathrm{CH}), 62.2\left(\mathrm{CH}_{2}\right), 34.6$ $\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{3}\right), 31.5\left(\mathrm{CH}_{2}\right)$ and $19.9\left(\mathrm{CH}_{3}\right)$.

Compounds 19 c and 20 c were obtained as a $5: 4$ mixture ( 0.24 $\mathrm{g}, 85 \%$ ) (Found: $\mathrm{M}^{+}$, 287.1315. $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}$ requires $M$, 287.1310); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300(\mathrm{OH})$.

For compound $19 \mathrm{c} \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.59(1 \mathrm{H}, \mathrm{s})$, $3.03(2 \mathrm{H}, \mathrm{t}, J 8), 3.90(2 \mathrm{H}, \mathrm{t}, J 8), 7.17(1 \mathrm{H}, \mathrm{d}, J 8), 7.2-7.55$ $(8 \mathrm{H}, \mathrm{m}), 7.97(1 \mathrm{H}, \mathrm{d}, J 8), 8.05(1 \mathrm{H}, \mathrm{d}, J 8)$ and $8.3(1 \mathrm{H}$, brs ).

For compound $\mathbf{2 0 c} ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.29(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $2.90(2 \mathrm{H}, \mathrm{t}, J 8), 3.69(2 \mathrm{H}, \mathrm{t}, J 8), 7.25(1 \mathrm{H}, \mathrm{d}, J 2), 7.3-7.6(8 \mathrm{H}$, $\mathrm{m}), 7.8(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.88(1 \mathrm{H}, \mathrm{d}, J 2)$ and $8.04(1 \mathrm{H}, \mathrm{d}, J 8) ; m / z 287$ ( $\mathrm{M}^{+}, 50 \%$ ), 256 100), 242 (3) and 241 (7).

Reaction of the Pyranoindolone 1a with trans- $\beta$-Nitrostyr-ene.-A degassed mixture of the pyranoindolone $1 \mathrm{a}(0.21 \mathrm{~g}, 1$ mmol ), and trans- $\beta$-nitrostyrene ( $0.70 \mathrm{~g}, 4.7 \mathrm{mmol}$ ) and toluene $\left(3 \mathrm{~cm}^{3}\right)$ was heated in a sealed tube for 18 h at $100^{\circ} \mathrm{C}$. The residue obtained after evaporation was chromatographed on silica gel with a gradient elution $\left(100 \% \mathrm{CHCl}_{3}\right.$ to $5 \% \mathrm{EtOAc}-$ $95 \% \mathrm{CHCl}_{3}$ ) to give the 1,9-dimethyl-2- (or 3)-phenylcarbazoles 21 and 22 in a $1: 1$ ratio ( $0.13 \mathrm{~g}, 48 \%$ ) with the spectroscopic characteristics as described previously. ${ }^{1}$

Reaction of the Pyranoindolone 1a with 1-Vinylpyrrolidin-2one $\mathbf{2 3}$ or N -(Benzyloxycarbonyl)-4,5-dihydropyrrole 25a and of 1-Phenylpyrano[3,4-b]indol-3-one 1c with N -Acetyl-4,5-dihydropyrrole 25b: General Procedure.-A mixture of the pyranoindolone 1a ( 2 mmol ), the pyrrolidinone $23\left(5 \mathrm{~cm}^{3}\right)$ or $4,5-$ dihydropyrrole $25 \mathrm{a}\left(2 \mathrm{~cm}^{3}\right)$ and a mixture of pyranoindolone 1 c ( $0.26 \mathrm{~g}, 1 \mathrm{mmol}$ ), with the dienophile $\mathbf{2 5 b}\left(3 \mathrm{~cm}^{3}\right)$, palladium-oncharcoal ( 0.04 g ) and toluene $\left(3 \mathrm{~cm}^{3}\right)$ was degassed and heated in a sealed tube during 5,4 and 2 days respectively at $120^{\circ} \mathrm{C}$. The residue obtained after evaporation was chromatographed on deactivated aluminium oxide ( $6 \mathrm{~cm}^{3}$ water $/ 100 \mathrm{~g}$ aluminium oxide) ( $10 \% \mathrm{EtOAc}-90 \% \mathrm{CHCl}_{3}$ ) to give 1,9-dimethyl-3-(2-oxopyrrolidin-1-yl)carbazole 24 or the $N$-acylated 2,3-dihydro-pyrrolo[3,2-b]carbazoles 26.

For compound 24 ( $0.15 \mathrm{~g}, 27 \%$ ); m.p. 201-202 ${ }^{\circ} \mathrm{C}$ (toluene) (Found: $\mathrm{M}^{+}, 278.1417 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires $M, 278.1419$ ); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1685(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.17(2 \mathrm{H}$, p, $J$ 8), $2.64(2 \mathrm{H}, \mathrm{t}, J 8), 2.81(3 \mathrm{H}, \mathrm{s}), 3.92(2 \mathrm{H}, \mathrm{t}, J 8), 4.02(3 \mathrm{H}$, s), $7.19(1 \mathrm{H}, \mathrm{m}), 7.32(1 \mathrm{H}, \mathrm{d}, J 8), 7.43(2 \mathrm{H}, \mathrm{m}), 7.97(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J 2$ ) and 8.02 ( $1 \mathrm{H}, \mathrm{dd}, J 8$ and 1); $\delta_{\mathrm{c}} 174$ (CO), 142.1 (C), 137 (C), 131.4 (C), 125.7 (CH), 123.4 (C), 122.8 (C), 122.6 (CH), $120.6(\mathrm{C}), 120(\mathrm{CH}), 118.8(\mathrm{CH}), 110.5(\mathrm{CH}), 108.5(\mathrm{CH}), 49.9$ $\left(\mathrm{CH}_{2}\right), 32.5\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{3}\right), 20.2\left(\mathrm{CH}_{3}\right)$ and $18.1\left(\mathrm{CH}_{2}\right) ; m / z$ $278\left(\mathrm{M}^{+}, 100 \%\right), 223$ (34) and 195 (8).

For compound 26a ( $0.25 \mathrm{~g}, 34 \%$ ); m.p. $187-188^{\circ} \mathrm{C}(\mathrm{MeOH}-$ $\mathrm{CHCl}_{3} 9: 1$ ) (Found: $\mathrm{M}^{+}, 370.1674 . \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 370.1681) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1700(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.59(3 \mathrm{H}, \mathrm{s}), 3.09(2 \mathrm{H}, \mathrm{t}, J 8), 3.96(3 \mathrm{H}, \mathrm{s}), 4.09(2 \mathrm{H}, \mathrm{t}$, $J 8), 5.32(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.16(1 \mathrm{H}, \mathrm{t}, J 8), 7.25(1 \mathrm{H}, \mathrm{d}, J 8), 7.4-7.6$ ( $6 \mathrm{H}, \mathrm{m}$ ), $8.03(1 \mathrm{H}, \mathrm{br} \mathrm{d})$, and $8.39(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; $\delta_{\mathrm{c}} 152.9(\mathrm{CO})$, 142.2 (C), 136.7 (C), 136.4 (C), 135 (C), 128.5 (CH), 128.3 (C), 128 (CH), 127.9 (CH), 125 (CH), 123.3 (C), 123.2 (C), 119.8 $(\mathrm{CH}), 118.5(\mathrm{CH}), 116.5(\mathrm{C}), 108.4(\mathrm{CH}), 103.6(\mathrm{CH}), 66.9\left(\mathrm{CH}_{2}\right)$, $47.6\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{3}\right), 27\left(\mathrm{CH}_{2}\right)$ and $15.4\left(\mathrm{CH}_{3}\right) ; m / z 370\left(\mathrm{M}^{+}\right.$, $19 \%$ ), 235 (40), 220 (38) and 91 (100).

For compound 26b obtained as an unstable oil ( $0.08 \mathrm{~g}, 25 \%$ ) (Found: $\mathrm{M}^{+}, 326.1419 . \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires $M, 326.1419$ ); $v_{\text {max }}(\mathrm{NaCl}) / \mathrm{cm}^{-1} 1715(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.26$ ( $3 \mathrm{H}, \mathrm{s}$ ), $3.21(2 \mathrm{H}, \mathrm{t}, J 8), 4.08(2 \mathrm{H}, \mathrm{t}, J 8), 7.1-7.6(8 \mathrm{H}, \mathrm{m}), 7.9$ $(1 \mathrm{H}, \mathrm{br}), 8.1(1 \mathrm{H}, \mathrm{d}, J 8)$ and $8.95(1 \mathrm{H}, \mathrm{s}) ; m / z 326\left(\mathrm{M}^{+}, 100 \%\right)$, 283 (72), 254 (30) and 206 (8).

Reaction of 6,7-Dimethoxy-2-benzopyran-3-one 28 with the Dienophile 16a in Acetic Anhydride.-A mixture of 2-acetyl-4,5-dimethoxyphenylacetic acid $27(0.21 \mathrm{~g}, 0.88 \mathrm{mmol})$, the dienophile $16 \mathrm{a}\left(3 \mathrm{~cm}^{3}\right)$ and acetic anhydride (freshly distilled over quinoline, $10 \mathrm{~cm}^{3}$ ) was degassed and heated in a sealed tube for 2.5 h at $120^{\circ} \mathrm{C}$. The residue obtained after evaporation was chromatographed on silica gel with a gradient elution ( $100 \% \mathrm{CHCl}_{3}$ to $5 \% \mathrm{EtOAc}-95 \% \mathrm{CHCl}_{3}$ ) to give a mixture of compounds 30 and a compound with the alkanol group protected by a tetrahydrofuranyl group. Deprotection on an activated DOWEX column and acylation with acetic anhydride yielded a pure hydroxyethylated naphthalenic compound $\mathbf{3 0}$ $(0.18 \mathrm{~g}, 72 \%)$; m.p. $114^{\circ} \mathrm{C}(\mathrm{MeOH})$ (Found: $\mathrm{M}^{+}, 288.1358$. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{4}$ requires $\left.M, 288.1361\right) ; \quad v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1750$ (CO); $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.98(3 \mathrm{H}, \mathrm{s}), 2.54(3 \mathrm{H}, \mathrm{s}), 3.05$ $(2 \mathrm{H}, \mathrm{t}, J 8), 3.90(3 \mathrm{H}, \mathrm{s}), 3.95(3 \mathrm{H}, \mathrm{s}), 4.20(2 \mathrm{H}, \mathrm{t}, J 8), 7.09$ $(1 \mathrm{H}, \mathrm{s}), 7.17(1 \mathrm{H}, \mathrm{d}, J 9), 7.25(1 \mathrm{H}, \mathrm{s})$ and $7.5(1 \mathrm{H}, \mathrm{d}, J 9) ; \delta_{\mathrm{c}}$ 171.1 (CO), 149.4 (C), 148.8(C), 130.9 (C), 130.5 (C), 128.5 (C), 128.3 (C), $126.8(\mathrm{CH}), 124.6(\mathrm{CH}), 106.8(\mathrm{CH}), 103.1(\mathrm{CH}), 64.6$ $\left(\mathrm{CH}_{2}\right), 55.7\left(\mathrm{CH}_{3}\right), 33.5\left(\mathrm{CH}_{2}\right), 21\left(\mathrm{CH}_{3}\right)$ and $14.6\left(\mathrm{CH}_{3}\right) ; m /=$ $288\left(\mathrm{M}^{+}, 27\right), 228$ (100) and 251 (42).

## Acknowledgements

The authors are indebted to the F.K.F.O. and the 'Ministerie voor wetenschapsbeleid' for financial support and to the K.U.

Leuven for an assistantship (P. V. B., P. V. D.). They are also grateful to Dr. F. Compernolle, Mr. R. De Boer and Mr. P. Valvekens for technical assistance.

## References

1 P. Van Doren, D. Vanderzande, S. Toppet and G. Hoornaert, Tetrahedron, 1989, 45, 6761.
2 P. Van Doren, F. Compernolle and G. Hoornaert, Tetrahedron 1990, 46, 4023.
3 C. J. Moody and P. Shah, J. Chem. Soc., Perkin Trans. 1, 1988, 1407; U. Pindur and H. Erfanian-Abdoust, Chem. Rev., 1989, 89, 1681.

4 C. J. Moody and P. Shah, J. Chem. Soc., Perkin Trans. 1, 1989, 376.
5 R. P. Linstead, A. F. Millidge, S. L. S. Thomas and A. L. Walpole, J. Chem. Soc., 1937, 1146; R. P. Linstead and S. L. S. Thomas, J. Chem. Soc., 1940, 1127.

6 D. J. Vanderzande, R. A. Ceustermans, H. J. Martens, Suzanne M. Toppet and G. J. Hoornaert, J. Org Chem., 1983, 48, 2188; D. J. Vanderzande, E. G. Kiekens, H. J. Martens and G. J. Hoornaert, J. Org. Chem., 1986, 51, 1019.
7 H. Plieninger, W. Müller and K. Weinerth, Chem. Ber., 1964, 97, 667;
G. N. Dorofeenko, V. G. Korobkova and E. A. Guzhina, Chem. Heterocycl. Compds., 1971, 319.
8 I. W. Elliott, Jr. and S. Evans, J. Org. Chem., 1973, 38, 3425
9 G. A. Kraus and K. Neuenschwander, J. Org. Chem., 1981, 46, 4791. 10 G. C. Morrison, R. O. Waite, A. N. Caro and J. Shavel, Jr., J. Org. Chem., 1967, 32, 3691.

Paper 1/05857F
Received 19th November 1991
Accepted 19th November 1991

